
0 "I/_' I_,

Charon message-passing toolkit for scientific computations

Rob F. Van der Wijngaart, Computer Sciences Corporation

NASA Ames Research Center, Moffett Field, CA 94035

Abstract: Charon is a library, callable from C and Fortran, that aids the conversion of structured-

grid legacy codes--such as those used in the numerical computation of fluid flows--into parallel,

high-performance codes. Key are functions that define distributed arrays, that map between dis-

tributed and non-distributed arrays, and that allow easy specification of common communications

on structured grids. The library is based on the widely accepted MPI message passing standard.

We present an overview of the functionality of Charon, and some representative results.

1 Introduction

A sign of the maturing of the field of parallel computing is the emergence of facilities that shield the

programmer from low-level constructs such as message passing (MPI, PVM) and shared memory

parallelization directives (P-Threads, OpenMP, etc.), and from parallel programming languages

(High Performance Fortran, Split C, Linda, etc.). Such facilities include: 1) (semi-)automatic

tools for parallelization of legacy codes (e.g. CAPTools [8], ADAPT [5], CAPO [g], SUIF com-

piler [6], SMS preprocessor [7], etc.), and 2) application libraries for the construction of parallel

programs from scratch (KELP [4], OVERTURE [3], PETSc [2], Global Arrays [10], etc.).

The Charon library described here offers an alternative to the above two approaches, namely a

mechanism for incremental conversion of legacy codes into high-performance, scalable message-

passing programs. It does so without the need to resort to explicit parallel programming con-

structs. Charon is aimed at applications that involve structured discretization grids used for the

solution of scientific computing problems. Specifically, it is designed to help parallelize algorithms

that are not naturally data parallel--i.e., that contain complex data dependencies--which include

almost all advanced flow solver methods in use at NASA Ames Research Center. Whi_e Charon

provides strictly a set o£ user-callable functions (C and Fortran), it can nonetheless be used to

convert serial legacy codes into highly-tuned parallel applications. The crux of the library is that

it enables the programmer to codify information about existing multi-dimensional arrays in legacy

codes and map between these non-distributed arrays and newly defined truly distributed arrays

at runtime. This allows the programmer to keep most of the serial code unchanged and only

use distributed arrays in that part of the code of prime interest. This code section, which is

parallelized using more functions from the Charon library, is gradually expanded, until the entire

code is converted. The major benefit of incremental parallalization is that it is easy to ascertain

consistency with the serial code. In addition, the user keeps careful control over the amount

of data transferred between processes, which is important on high-latency distributed-memory

machines 1.

The usual steps that a programmer follows when parallelizing a code using Charon are as

follows. First, define a distribution of the arrays in the program, based on a division of the grid(s)

among all processors. Second, select a section of the code to be parallelized, and construct a

so-called parallel bypass: map from the non-distributed (legacy code) array to the distributed

array upon entry of the section, and back to the non-distributed array upon leaving it. Third, do

the action parallelization work for the section, using more Charon functions.

The remainder of this paper is structured as follows. In Section 2 we explain the library

functions used to define and manipulate distributed arrays (distributions), including those that

allow the mapping between non-distributed and distributed arrays. In Section 3 we describe the

functions that can be used actually to parallelize an existing piece of code. Some examples of

the use and performance of Charon are presented in Section 4.

2 Distributed arrays

Parallelization of scientific computations using Charon is based on the concept of domain decom-

position. Typically, one or more multi-dimensional grids are defined, and arrays--representing

computational work--are associated with these grids. The grids are divided into nonoverlapping

1We will henceforthspeak of processors, even though processes is the more accurate term.

pieces,whichareassignedto the processorsin the computation. The associated arrays are thus

distributed as well. This process takes place in several steps, as illustrated in Figure 1, and as

described below.

First (Figure la), the logically rectangular discretization grid of a certain dirnensionality and

extent is defined, using OliN_Create_grid. The purpose of this step is to establish a geomet-

ric framework for all arrays associated with the grid. It also attaches to the grid an MPI [11]

communicator, which serves as the context and processor subspace within which all subsequent

Charon-orchestrated communications will take place. Multiple coincident or non-coincident com-

municators may be used within one program, allowing the programmer to assign the same or

different (sets of) processors to different grids in a multiple-grid computation.

Second (Figure lb), tessellations of the domain (sections) are defined, based on the grid

variable. The associated library call is CHN_Create_section. Sections contain a number of

cutting planes (cuts) along each coordinate direction. The grid is thus carved into a number of

cells, each of which contains a logically rectangular block of grid points. Whereas the programmer

can specify any number of cuts and cut locations, it is often sufficient to make a single call to a

high-level routine to define all the cuts belonging to a particular kind of domain decomposition.

For example, defining a section with just a single cell (i.e. a non-divided grid with zero cuts)

is accomplished with CHN_Set_solopartition_cuts. Using CHN_Set_unipartition_cuts

divides the grid evenly into as many cells as there are processors in the communicator.

Third (Figure lc), the cells created in a section have to be assigned to processors, resulting in

a decomposition. The associated library call is CHN_Create_decomposition. The reason why

the creation of section and decomposition are separated is to provide flexibility. For example, the

programmer may want to divide a grid into ten slices for execution on a parallel computer, but

may want to assign all these slices to the same processor for the purpose of debugging on a serial

machine. As in the case of the creation of sections, the programmer can choose to assign each

cell to a processor individually, or make a single call to a high-level routine. For example, the

function CHN_Set_unipartition_owners assigns each of the cells in the unipartition section

3

to a differentprocessor.But regardlessof the numberof processorsin the grid communicator,

the function CHN Set solopaztition owners assigns all the cells in the section to the same

processor.

Finally (Figure ld), arrays with one or more spatial dimensions (same as the grid) are associ-

ated with a decomposition, resulting in distributions. The associated library call is CHN_Create_

distribution. The arrays may represent scalar quantities at each grid point, or higher-order

tensors. In the example in Figure ld the tensor rank is 1, and the thusly defined vector has 5 com-

ponents at each grid point. The data type of a distribution is one of a subset of the regular MPI

data types (MPI_REAL in this case). Since Charon expressly supports the application of stencil

operations on multi-dimensional grids, we also specify a number of so-called ghost points. These

form a border of points (indicated by the shaded area) around each cell in the decomposition,

which can be used as a cache to store data copied from adjacent cells. In this case the undivided

distribution has zero ghost points, whereas the unipartition distribution has two ghost points,

which can support higher-order difference stencils (e.g. a 13-point star in three dimensions, as

shown in Figure 2).

The most salient aspect of distributions that sets Charon apart from other parallelization

libraries is the fact that the programmer also supplies the memory occupied by the distributed

array; the Charon distribution provides a structuring interpretation of user space. In the example

in Figure ld it is assumed that azr is the starting address of the actual, non-distributed array used

in the legacy code, whereas arrd is the starting address of a newly declared array that will hold

data related to the unipartition distribution. By mapping between arr and arrd--accomplished

using CHN_Redistribute (see also Figure ld)--we can dynamically switch from the serial legacy

code to truly distributed code, and back. All that is required is that the programmer define

distribution arr_ such that the memory layout of the (legacy code) array arr coincide exactly

with the Charon specified layout. This act of reverse engineering is supported by functions that

allow the programmer to specify array padding and offsets, by a complete set of query functions,

and by Charon's unambiguously defined memory layout model (see Section 3.3).

Although CHN_Kedistribute can be used to construct parallel 'bypasses' of serial code of

the kind demonstrated above, it can actually be used to map between any two compatible

distributions (same grid, data type, and tensor rank). This is shown in Figure 3, where two

stripwise distributions, one aligned with the first coordinate axis, and the other with the second,

are mapped into each other, thereby establishing a dynamic transposition. This is useful when

there are very strong but mutually incompatible data dependencies in different parts of the

program (e.g. 2D Fast Fourier Transforms). By default, the unipartition decomposition divides all

coordinate directions evenly, but by excluding certain directions from partitioning (CHN_Exclude_

partition_direction) we can force a stripwise distribution.

3 Distributed and parallel execution support

While it is an advantage to be able to keep most of a legacy code unchanged and focus on a

small part at a time for parallelization, it is often still nontrivial to arrive at good parallel code

for complicated numerical algorithms. Charon offers support for this process at two levels.

The first concerns a collection of wrapping and utility functions that allows the programmer

to keep the entire serial logic and structure of the legacy code unchanged, while making all

assignments to elements of genuinely distributed arrays. These functions incur a significant

overhead, and are meant to be removed in the final version of the code. They provide merely a

stepping stone in the parallelization process, and may be skipped altogether by the more intrepid

programmer.

The second is a collection of versatile and highly optimized bulk communication functions

that support the implementation of sophisticated data-parallel and--more importantly--non-

data-parallel numerical methods, such as various pipelined algorithms.

3.1 Wrapping functions

In a serial program it is immediately clear what the statement

a(i,j,k) = b(i+2,3-l,k)

means, provided a and b have been properly typed and dimensioned, but when these arrays are

distributed across several processors the result is probably not what is expected, and most likely

wrong. This is due to one of the fundamental complexities of message-passing, namely that the

programmer is responsible for defining explicitly and managing the data distribution. Charon can

relieve this burden by allowing the programmer to write the above assignment as

call CHN_Assign(CHN_Address(a_,i,j,k),CHN_Value(b_,i+2,j-l,k),ier)

with no regard for how the data is distributed (assuming that a and b_ are distributions related

to arrays a and b). The benefit of this wrapping is that the user need not worry (yet) about

communications, which are implicitly invoked by Charon, as needed.

The three functions introduced here have the following properties. CHN Value inspects the

distribution b, determines which processor owns the grid point that holds the value--there can

be only one owner--and broadcasts that value to all processors in the communicator ('owner

serves' rule). CHN Address inspects the distribution a_ and determines which processor owns

the grid point that holds the value. If the calling processoris the point owner, the actual address--

also called Ivalue--is returned, and NULL otherwise 2. CHN Assign stores the value of its second

argument at the address in the first argument if the address is not NULL. Consequently, only

the point owner of left hand side of the assignment stores the value ('owner assigns' rule). No

distinction is made between values obtained through CHN_Value and local values, or expressions

containing any combination of each; all are rvalues. Similarly, no distinction is made between an

address obtained through CHN Address and a local address. Hence, it is perfectly legitimate to

make the following assignments:

call CHN_Assign(CHN_Address(a_,i,j,k),5.O,ier)

call CHN_Assign(aux,CHN_Value(b_,i,j-l,k)+l.0,ier)

aux = CHN_Value(b_,i,j-l,k)+l.0

call CHN_Assign(CHN_Address(a_,i,j,k),CHN_Value(a_,i,j,k)**2+l.O,ier)

!1

_2

_3

_4

21n Fortran return values cannot be used as Ivalues, but this problem can be easily circumvented, since the

address is immediately passed to a C function.

It should be observed that assignments 2 and 3 are equivalent. Notice also that assignment 4

will yield the expected result: the expression CHN_Value (a_, i, j ,k)*.2+1.0 is evaluated first,

and then stored at the (unique) address CHN_Address(a_,i,j,k). An important feature of

wrapped code is that it is completely serialized. All processors execute the same statements, and

whenever an element of a distributed array occurs on the right hand side of an assignment, it is

broadcast 3. As a result, it is guaranteed to have the correct serial logic of the legacy code.

3.2 Bulk communications

The performance of wrapped code can be improved by removing the need for the very fine-grained,

implicitly invoked communications, and replacing them with explicitly invoked bulk communica-

tions. Within structured-grid applications the need for non-local data is often limited to (spatially)

nearest-neighbor communication; stencil operations can usually be carried out without any com-

munication, provided a border of ghost points (see Figure ld) is filled with array values from

neighboring cells. This fill operation is provided by CHN_Copyfaces, which lets the programmer

specify exactly which ghost points to update. The function takes the following arguments:

• the thickness of layer of ghost points to be copied; this can be at most the number of ghost

points specified in the definition of the distribution,

• the components of the tensor to be copied. For example, the user may wish only to transfer

the diagonal elements of a matrix,

• the coordinate direction in which the copying takes place,

• the sequence number of the cut (defined in the section) across which copying takes place,

3The semantics of C and Fortran demand the use of broadcasts instead of point-to-point communications; if

we could insist that the address parameter of the CHN_Assign call be evaluated before the rvalue expression, it

would be possible to have the contributor(s) to the rvalue send their data directly to the processor(s) responsible

for assigning it to a non-NULL address. However, the C and Fortran standards do not specify in which order

actual parameters of subroutines are evaluated, so we must assume that they will be evaluated independently.

This means that all processors must be able to evaluate the rvalue, necessitating the broadcasts.

• the rectangular subset of points within the cut to be copied.

In general, all processors within the grid's MPI communicator call CHN_Copyfaces, but those

that have no work to do (because they do not own points involved in the copy operation)

may safely skip the call. There are also wild cards for copying all components of a tensor, for

copying across all cuts simultaneously, and for copying all points along a cut (see Figure ib). A

useful variation of CHN_Copyfaces is CHN_Copyfaces_all, which fills all ghost points of the

distribution in all coordinate directions. It is the variation that is most commonly encountered

in other parallelization packages for structured-grid applications, since it conveniently supports

explicit, data parallel computations. But it is not sufficient to allow, for example, implementation

of the pipeline algorithm described in Section 4.2.

The remaining two bulk communications provided by Charon are the previously described

CHN_Redistribute, and CHN_Oettile. The latter copies a subset of a distributed array--which

may be owned by several processors--into the local memory of a specified processor (cf. Global

Arrays' ga_get [I0]). This is useful for applications that have non-nearest-neighbor remote data

dependencies, such as non-local boundary conditions for flow problems.

3.3 Parallelizing distributed code segments

Once the remote-data demand has been satisfied through the bulk copying of ghost point values,

the programmer can instruct Charon to suppress broadcasts by declaring a section of the code local

(see below). Within a local section not all code should be executed anymore by all processors,

since assignments to points not owned by the calling processor will usually require remote data

not present on that calling processor. Thus, the code must be restructured to restrict the index

sets of loops over (parts of) the grid. This is the actual process of parallelization, and it is left to

the programmer. It is usually conceptually simple for structured-grid codes, but the bookkeeping

matters of changing all data structures at once throughout a code have traditionally hampered

such parallelization. The advantage of using Charon is that the restructuring focuses on small

segments of the code at any one time, and that the starting point is code that already executes

correctly on distributed data structures. The parallelization of a complicated loop nest typically

involves the following steps.

I. Determine the order in which the cells in the grid should be visited to resolve all data

dependencies in the target parallel code. For example, in the case of the x-sweep in the

SP code described in Section 4.1 (see Figure 5), grid cells are visited layer by layer in

a marching procedure in the positive z-direction. In this step all processors still visit all

cells, and no explicit communications are required, thanks to the wrapper functions. This

step is supported by Charon query functions that return the number of cells in a particular

coordinate direction, and that return the starting and ending grid indices of these cells

(useful for computing loop bounds).

2. Fill ghost point data in advance. If the loop is completely data parallel, a single call to CHN_

Copyfaces or CHN_Copyfaces_all before entering the loop is usually sufficient to fill ghost

point values. If a non-trivial data dependence exists, then multiple calls to CHN_Copyfaces

are usually required. For example, in the x-sweep in the SP code CHN_Copyfaces is called

between each layer of cells in the x-direction. At this stage all processors still execute all

statements in the loop nest, so that they can participate in broadcasts of data not resident

on the calling processor. However, whenever it is a ghost point value that is required, it

is served by the processor that owns it, rather than the processor that owns the cell that

has that point as an interior point. This seeming ambiguity is resolved by placing calls to

CHN_Begin_ghost_access and CHN_End_ghost_access around the code that accesses

ghost point data, which specify the index of the cell whose ghost points should be used.

3. Suppress broadcasts. This is accomplished by using the bracketing construct CHN_Begin_

local/CHN_End_local to enclose the code that accesses elements of distributed arrays.

For example:

call CHN_Begin_local (MPI_COMM_WORLD,ier)

call CHN_Assign (CHN Address (a_,i),CHN_Value (b_,i+l) -CHN_Value (b_,i-i),ier)

call CHN_End_local (MPI_COMM_WORLD,ier)

At the same time, the programmer restricts accessing Ivalues to points actually owned by

the calling processor. This is supported by the query functions OliN_Point_owner and

CHN_Cell_owner, which return the MPI rank of the processor that owns the point and the

grid cell, respectively.

Once the code segment is fully parallelized, the programmer can strip off the wrappers to

obtain the final, high-performance code. This stripping process effectively consists of translating

global grid coordinates into local array indices, a chore that is again easily accomplished, due to

Charon's transparent memory layout model. By default, all subarrays of the distribution associated

with individual cells of the grid are dimensioned identically, and these dimensions can be computed

in advance, or can be obtained through Charon query functions. For example, assume that the

maximum number of cells owned by each processor in the computation is nmax, the dimensions

of the largest cell in the grid are nxxny, and the number of ghost points is gp. Then the array

flux related to the scalar distribution flux_ can be dimensioned as follows.

dimension flux(1-gp:nx+gp,l-gp:ny+gp,nmax)

Assume further that the programmer has filled the arrays start (2 ,nmax) and end(2,nmax)

with the starting and ending point indices, respectively (using Charon query functions), of the

cells in the grid owned by the calling processor. Then the following two loop nests are equivalent,

provided the calling processor owns at least n cells.

do j = start(2,n), end(2,n)

do i = start(1,n), end(1,n)

call CHN_Assign(CHN_Address(flux_,i,j),5.0*(i+]),ier)

end do

end do

do j = 1, end(2,n)-start(2,n)+l

do i = 1, end(1,n)-start(1,n)+l

10

flu_(i,j,n) = 5.0*(i+j)

end do

end do

The above example illustrates the fact that Charon minimizes encapsulation; it is always possible

to access data related to distributed arrays directly, without having to copy data or call specialized

access functions. This is a programming convencience, as well as a performance gain. Most

significantly, programs parallelized using Charon usually ultimately only contain library calls that

create and query distributions, and that perform high-level communications.

Finally, it should be noted that it is not necessary first to wrap legacy code to take advantage

of Charon's bulk communication facilities for the construction of parallel bypasses. Wrappers and

bulk communications are completely independent.

4 Examples

We present two examples of numerical problems, SP and LU, with complicated data dependencies.

Both are taken from the NAS Parallel Benchmarks (NPB) [1], of which hand-coded MPI versions

(NPB-MPI) and serial versions are freely available. They have the form: Amn+l =- b(z_), where

x is the time-dependent solution, _ is the number of the time step, and b is a nonlinear 13-point

stencil operator (see Figure 2). The difference is in the shape of .4, the discretization matrix that

defines the 'implicitness' of the numerical scheme. For SP it is effectively: Asp = Lz/_,yL_, and

for LU: ALU = L+L_.

4.1 SP code

Lz, Ly and L_ are fourth-order difference operators that determine data dependencies in the

z, y, and x directions, respectively. Asp is numerically inverted in three corresponding phases,

each of which involves the solution of a large number of independent banded (penta-diagonal)

matrix equations, three for each grid line. Each equation is solved using Gaussian elimination

without pivoting, which is implemented as two sweeps along the grid line, one in the positive

ll

direction to carry out the forward elimination, and one in the negative direction to complete

the backsubstitution. The method chosen in NPB-MPI is the so-called multipartition (MP)

decomposition strategy. It assigns to each processor multiple blocks of grid points in such a

manner that, regardless of sweep direction, each processor has work to do during each stage of

the solution process; the load is fully balanced. An example of a g-processor 3D MP is shown in

Figure 4. Details can be found in [1]. Whereas most of the packages in the literature that we

have studied do not allow the definition of MP, it is easily specified in Charon, i.e.,

call CHN_Create_section(multi_sec,grid,ier)

call CHN_Set_multipartition_cuts(multi_sec,ier)

call CHN_Create_decomposition(multi_cmp,multi_sec,ier)

call CHN_Set_multipartition_owners(multi_cmp,ier)

The solution process for a particular coordinate direction, say z, is as follows (see Figure 5).

All processors start the forward elimination on the left side of the grid. When the boundary of

the first layer of grid blocks is reached, the elements of the penta-diagonal matrix that need to

be passed to the next layer of blocks are copied in bulk using CHN_Copyfaces. Then the next

layer of blocks is traversed, followed by another copy operation, etc. The number of floating

point operations and words communicated in this fashion in the Charon version of the code is

exactly the same as in NPB-MPI. The only difference is that Charon copies the communicated

values into ghost points, whereas in NPB-MPI they are immediately used to update the matrix

system without going to main memory. The latter is more efficient, but comes at the cost of

a much greater program complexity, since the communication must be fully integrated with the

computation.

The results of running both Charon and NPB-MPI versions of SP for three different grid sizes

on an SGI Origin2000 (250 MHz MIPS R10000 processor) are shown in Figure 6. Save for a

deterioration of performance of the Charon code at 81 processors for class B (1023 grid) due

to a bad stride, the results indicate that the Charon version achieves approximately 70% of the

performance of NPB-MPI, with roughly the same scalability characteristics. While this difference

12

is significant, it shouldbe noted that the Charonversionwasderived from the serialcode in

approximatelythree days,whereasNPB-MPI took morethan one month (both by the author

of this paper). Moreover,sinceCharonand MPI callscan be freely mixed, it is alwayspossible

for the programmerwho is not satisfiedwith the performanceof Charoncommunicationsto do

(someof) the messagepassingby hand.

Interestingly,if SPis runon a 10-CPUSunUltra Enterprise4000Server(250 MHz Ultrasparc

II processor),whosecachestructure differs significantlyfrom the Origin's, the resultsfor the

Charonand NPB-MPIversionsarealmostidentical,meaningthat there is nogain in performance

through hand coding. The graphical Sun results for Class A (grid size 64 a points) are shown in

Figure 7, along with the results for the same grid on the SGI Origin machine, for comparison.

4.2 LU code

L_ and L+ are first-order direction-biased difference operators. They define two sweeps over the

entire grid. The structure of L_ dictates that no point (i, 3, h) can be updated before updating all

points (ip, jp, kp) with smaller indices: {(ip, jp, %)lip < i, jp __ j, kp __ k, (ip,jp. kp) ?_ (i,j, k)}.

This data dependency is the same as for the Gauss-Seidel method with lexicographical point

ordering. L + sweeps in the other direction. Unlike in the SP case, there is no concept of

independent grid lines for LU. The solution method chosen for NPB-MPI is to divide the grid into

pencils, one for each processor (see Figure 8), and pipeline the solution process (see Figure 9).

Each unit of computation is a single plane of points (a tile) of the pencil. Once a tile is updated,

the updated points on its boundary are communicated to the pencil's Eastern and Northern (for

L_) neighbors. Subsequently, the next tile in the pencil is updated. Of course, not all boundary

points of the whole pencil should be updated after completion of each tile update, but only the

boundary points of the 'active' tile. This is easily specified in CHN_Copyfaces.

The results of both Charon and NPB-MPI versions of LU for three different grid sizes on an SGI

Origin2000 250 MHz system are shown in Figure 10. Now the performance of the Charon code

is almost the same as that of NPB-MPI. This is because both use ghost points for transferring

13

informationbetweenneighboringpencils.

Again,if the problem is run on the Sun Enterprise 4000, the performances of the hand coded

and Charon parallelized programs are nearly indistinguishable.

5 Discussion and conclusions

We have given a brief presentation of some of the major capabilities of Charon, a parallelization

library for scientific computing problems. It is useful for those applications that need high scal-

ability, or that have complicated data dependencies that are hard to resolve by analysis engines.

Since some hand coding is required, it is more labor intensive than using a parallelizing compiler

or code transformation tool. Moreover, the programmer must have some knowledge about the

application program structure in order to make effective use of Charon. When the programmer

does decide to make the investment to use the library, the results are close to the performance

of hand-coded, highly tuned message passing implementations, at a fraction of the development

cost. Future work on the library will include a graphical user interface that assists in the wrapping

of legacy code statements. More information and a user guide are being made available by the

author [12].

References

[1] D.H. Bailey, T. Harris, W.C. Saphir, R.F. Van der Wijngaart, A.C. Woo, M. Yarrow, "The

NAS parallel benchmarks 2.0," Report NAS-95-020, NASA Ames Research Center, Moffett

Field, CA, December 1995.

[2] S. Balay, W.D. Gropp, L. Curfman Mclnnes, B.F. Smith, "PETSc 2.0 Users manual," Report

ANL-g5/11 - Revision 2.0.24, Argonne National Laboratory, Argonne, IL, 199g.

[3] D.L. Brown, G.S. Chesshire, W.D. Henshaw, D.J. Quinlan, "Overture: An obJect-oriented

software system for solving partial differential equations in serial and parallel environments,"

8th SIAM Conf. Parallel Proc. for Scientific Computing, Minneapolis, MN, March 1997.

14

[4] S.B. Baden,D. Shalit, R.B. Frost, "KELPUserGuidVersion1.3," Dept. Comp.Sci. and

Engin.,UC SanDiego,LaJolla, CA, January2000.

[5] M. Frumkin, J. Yan, "Automatic Data Distribution for CFD Applicationson Structured

Grids," NASTechnicalReportNAS-99-012,NASAAmesResearchCenter,CA, 1999.

[6] M.W. Hall, J.M. Anderson,S.P.Amarasinghe,B.R. Murphy,S.-W. Liao, E. Bugnion, M.S.

Lam, "Maximizing Multiprocessor Performance with the SUIF Compiler," IEEE Computer,

Vol. 29, pp. 84-89, December 1996.

[7] T. Henderson, D. Schaf[er, M. Govett, L. Hart, "SMS Users Guide," NOAA/Forecast Sys-

tems Laboratory, Boulder, CO, January 2000.

[8] C.S. lerotheou, S.P. Johnson, M. Cross, P.F. Leggett, "Computer aided parallelisation tools

(CAPTools)--conceptual overview and performance on the parallelisation of structured mesh

codes," Parallel Computing, Vol. 22, pp. 163-195, 1996.

[9] H. Jin, M. Frumkin, J. Yan, "Use Computer-aided tools to parallelize large CFD appli-

cations," NASA High Performance Computing and Communications Computational Aero-

sciences (CAS) Workshop 2000, NASA Ames Research Center, Moffett Field, CA, February

2000.

[10] J. Nieplocha, R.J. Harrison, R.J. Littlefield, "The global array programming model for high

performance scientific computing," SIAM News, Vol. 28, August-September 1995.

[11] M. Snir, S.W. Otto, S. Huss-Lederman, D.W. Walker, J. Dongarra, "MPI: The Complete

Reference," MIT Press, 1995.

[12] R.F. Van der Wijngaart, Charon home page, http://www.nas.nasa.gov/-wijngaar/charon.

15

a. Define logical grid (Step 1)

CHN Create_grid(grd,MPl_COMM_WORLD,2);
CHN Set_gdd_size(g rd,0,nx);
CHN_Set_grid_size(grd, 1,ny);

III
Itll

IIII

III
1111

III
IIII

ny itt_

11,,l'
IIII

t IIIL

tli[
illi

ILII

_ nx

ill!!!!!
:11[:::_:

_ till::::;
[111::::_
illL

I,,liiiii
II]lI,lliiiii

ii!ii iii
I111:::::
Jill:::::

]Ill

b. Define sections (tessellations) based on grid (Step 2)

CHN_Create_section(solo_sec,grd);
CH N_Set_solopa rtition_cut s(solo_sec);

_ Cell

CHN_Create_section(uni_sec.grd);
CHN Set_unipartition_cuts(uni_sec);

I11111

IIII
II1Ill,i,

111111
-F_44-_

_11111

I11111
IIII11
IIIIII
IIIIII

4-F_4_-F
Iltltl
IIIIII
I11111
Illlll
Illtll

cut

i

IIIlI|_:_---"Jl_""J_t

Illlll_ _Cell
IIIlil_
Illlll_

4 _-P _ 4 _'_P"I_ - " cut

IIIIII;IIIIII
IIIIIIiiiiiii
Illlll'llll||
p_-_4H-_H-P--cut
IIIl_l;ll

11111_411

IIIIll;ll[lll

c. Define decompositions (processor assignments) baaed on sections (Step3)

CH N_Create_decomposition(solo_crnp,solo_sec); CHN_Create_deoomposition(uni_cmp,u ni_sec);
CHN Set_solopa rtition owners(solo_cmp.0); CHN_Set_uniparbtion_owners(uni crop);

_roc. 6 ', proc. 7 : proc. 8

=

processor 0)roc. 3 i proc. 4 proc. 5 J

d. Define distributed arrays (exploded view) based on decompositions (Step 4)

CH N Create_dist ribution(arr_,solo_cmp,M PI_R EAL,arr,0.1,5);

No ghost points

CHN_Redistribute(arrd_,arr_);

I scatter

_ gather I

CHN_Redislribute(arr_.arrd_);

CHN_Create_distribution(arrcl_,uni_cmp, M PI_R EAL.arrd.2,1,5);

Figure 1: Defining and mapping distributed arrays

16

Figure 2: 13-point star-shaped difference stencil

17

a. Define stripwlse tessellations (based on same grid)

CHN_Create_section(x_sec,grd);
CHN_Exclude_partition_direction(x_sec,0);
CHN_Set_unipartition_cuts (x_sec);

l[|llll] IIll
llltlllt

III
I=11 iiiiIIII

I|111111 IIII

//// 1111 Illl
[1111111

|1111111
--_F4- -f_-_

IIInllll Illl
||llllll1,,,,,,, IIII
rlllllll iiii
/llllltl iiii

.-- cut

--- cut

b. Define decompositions

CHN_Create_decornposition(x_cmp,x_sec);
CHN Set unipartition_owners(x_cmp);

CHN Create_seclion(y_sec,g_);
CHN_Exclude_piutlion_direclion(y_sec, 1);
CHN_ S__u nipartilion_cuts(y_sec);

i
0

' I:[i l
I I I I I:1 I I 1 I I,I I 1 1

i III1=1111111111
I,IIIIll:]lll

' ' I I?1 I I] I I;! I I
:lllltl,!]li

I 1 I hi I I I I I'! I I illlll,llllll:ill
[IIIIHIIIII_lll

I:l I I I I I,l t I i

Illlhllllll'lll i
It111,1111 ITIII
IIII1'111111;11t'

Illll:lltlll_lll i
Illlllllllllllll

IIIIII111111_111

Illllillllllillll

cut cut

CHN_Create_Oeoomposition(y_cmp,y_se¢);
CHN_Set_uniparlitio__owners(y_cmp);

processor 2

processor 1

.....................

processor 0

pro(:. 0 proc. 1 proc. 2

c. Define distributed arrays and perform transpose

OHN_Create_distribution(arrx_,x_cmp,MPl_REAL, arrx,0,1,5); CHN_Create_distribution(arry_,y_cmp,MPl_REAL, arry,0,1,5);

CHN_Redistribute(arry_,arrx_);

ltranspose_

_ranspose l

CHN_Redistribute(arrx_,arry_);

Figure 3: Transposing distributed arrays

18

z

½y

Figure 4: 3D Multipartition decomposition (9 processors); indices indicate processor ownership

Step 1: Update layer of blocks Step 2: Communicate matrix
elements (CHN_Copyfaces)

/x

Step 3: Update layer of blocks

Step 4: Communicate matrix
elements (CHN Copyfaces)

7x

Step 5: Update layer of blocks

Figure 5: Multipartition solution process for SP code (L_ forward x-sweep)

19

0
LL

10000

8000

6000

4OOO

2000

0

I I

0

-- Charon 64x64x64
NPB-MPI 64x64x64

--- Charon 102x102x102
NPB-MPI 102xl 02x102

Charon 162xl 62x162

NPB-MPI 162xl 62x162 _ - "

f

/

i

/

/

1
f

i
i

1
I

.f

processors

50

Figure 6: Performance of NAS Scalar Penta-diagonal benchmark on 250 MHz SGI Origin2000

2O

1000

_tJ

C_.
O

I.L

8OO

600

400

2OO

Charon/Sun

NPB-MPI/Sun
Charon/SGI

NPB-MPI/SGI

•//

/.7

/

/
/

/
/

/
/

/

,'" f

/" f

/
/

/

/
/

/

_ I , L h I i I ,

0 2 4 6 8 10

processors

Figure 7: Performance of NAS Scalar Penta-diagonal benchmark on Sun Enterprise 4000 server,

compared with SGI Origin2000 (643 grid)

21

Figure8: Unipartitionpencildecomposition(!6 processors);indicesindicateprocessorownership

22

Step I: Update tile

I"
Step 4: Communicate tile edges

(CHN_Copyfaces)

Step 2: Communicate tile edges

(CHN_Copyfaces)

Step 5: Update tiles

Step 3: Update tiles

I
Step 6: Communicate tile edges

(CHN_Copyfaces)

Step 7: Update tiles

Figure g: Start of pipelined solution process for LU code (L_)

23

O

I.L

15O00

10000

5000

0

I 1

Charon 64x64x64

NPB-MPI 64x64x64

Charon 102xl 02xl 02

NPB-MPI 102x102x102
Charon 162x162x162

NPB-MPI 162x162x162

processors

Figure 10: Performance of NAS Lower Upper benchmark on 250 MHz SGI Origin2000

24

